A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physiological aging in three dimensions. | LitMetric

Physiological aging in three dimensions.

Trends Cell Biol

Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aging is characterized by progressive structural and functional decline, driven partially by epigenetic alterations. While changes in DNA methylation, histone modifications, and chromatin accessibility are well studied, the role of three-dimensional chromatin organization in aging remains underexplored. Advances in chromosome conformation capture technologies have revealed hierarchical chromatin structures, including compartments, topologically associating domains (TADs), and chromatin loops, which are crucial for gene regulation. Emerging evidence suggests that aging changes these structures, leading to altered gene expression and cellular dysfunction. This review summarizes recent findings on age-associated chromatin reorganization, highlighting its impact on transcription and nuclear architecture. It also compares the roles of 3D chromatin organization in aging and senescence, highlighting shared and distinct features in these biological contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2025.08.002DOI Listing

Publication Analysis

Top Keywords

chromatin organization
8
organization aging
8
chromatin
6
physiological aging
4
aging three
4
three dimensions
4
aging
4
dimensions aging
4
aging characterized
4
characterized progressive
4

Similar Publications