A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification. | LitMetric

TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification.

Comput Biol Med

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, 30303, GA, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2025.110996DOI Listing

Publication Analysis

Top Keywords

transunet-ddpm
4
transunet-ddpm transformer-enhanced
4
transformer-enhanced diffusion
4
diffusion model
4
model subject-specific
4
subject-specific brain
4
brain network
4
network generation
4
generation classification
4
classification generative
4

Similar Publications