98%
921
2 minutes
20
Vector control programs have historically relied on chemical insecticides including organochlorines, organophosphates, carbamates, and pyrethroids but the rapid escalation of insecticide resistance in mosquito populations now threatens the sustainability of these interventions. While genetic and biochemical resistance mechanisms are well characterized, emerging evidence implicates the mosquito microbiome as an additional, underexplored factor influencing resistance. Several microbial taxa (Bacillus cereus, Enterobacter cloacae, Pseudomonas spp., Wolbachia) have been associated with detoxification pathways, yet causal links between these microbiota and specific resistance phenotypes remain weakly defined. Furthermore, the extent to which microbiome shifts modulate mosquito life-history traits such as survival, fecundity, and development time under sustained insecticide selection remains largely unknown. These traits are key determinants of vectorial capacity, and microbiome-mediated changes could alter disease transmission dynamics in ways not currently accounted for in control strategies. This review critically synthesizes evidence from 2005-2024, drawing on peer-reviewed studies, systematic reviews, and experimental work from NCBI, PubMed, ScienceDirect, and Google Scholar. We evaluate the interplay between insecticide-driven selection, microbiome composition, and mosquito biology, highlighting mechanistic uncertainties, methodological limitations, and gaps in longitudinal validation. The analysis underscores the urgent need for integrative research combining microbiome manipulation, functional genomics, and ecological monitoring to move from correlation to causation. By clarifying the microbiome-resistance nexus, this work aims to inform more sustainable, evidence-based strategies for long-term vector control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/jvbd.Jvbd_147_25 | DOI Listing |
J Econ Entomol
September 2025
Department of Entomology and Nematology, Southwest Florida Research and Education Center (SWFREC), University of Florida/IFAS, Immokalee, FL, USA.
The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico.
Ionizing radiation is widely used in insect sterilization for pest control using the Sterile Insect Technique, which consists of the mass rearing of insects and their irradiation with gamma rays to release them in target areas where they will mate with wild females. However, there is a concern and controversy about the nuclear origin applied in this technique. One alternative for sterilization is the use of X-rays, which do not have a nuclear origin, are easier to operate, and do not generate radioactive waste.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
European Biological Control Laboratory (EBCL USDA ARS), Montferrier-sur-lez, France.
Evaluating the olfactory preferences of emerging insect pests is critical to develop monitoring tools and improve early detection and management strategies. Here the chemical ecology and olfactory preferences of the allium leafminer Phytomyza gymnostoma Loew (Diptera: Agromyzidae), an invasive pest in North America affecting allium crops such as leeks and onions, were investigated. Three bioassay methods were assessed under laboratory conditions: wind tunnel, Y-tube olfactometer, and arena bioassay.
View Article and Find Full Text PDFBioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Faculty of Medicine, University of Prishtina, University Clinical Center of Kosovo, Prishtina, Republic of Kosovo.
Objective: The aim of this study was to assess the association between allergic reactions after COVID-19 vaccination and the history of high-risk allergy, individual predisposing factors such as age and gender, and COVID-19 vaccine type.
Materials And Methods: This retrospective cohort study included 234 adult patients (18 years old and above) who underwent a COVID-19 vaccine allergy test up until February 2023 in a Clinic of Allergy and Clinical Immunology in the University Clinical Center of Kosovo. All patients suspected of allergy underwent skin testing: SPT (skin prick test) and IDT (intradermal test) using either an mRNA (ribonucleic messenger acid) vaccine (BNT162b2, Pfizer-BioNTech) and/or an adenoviral vector vaccine (AZD1222, AstraZeneca).