A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Severe dengue children with critical complications have been attributed to high mortality rates, varying from approximately 1% to over 20%. To date, there is a lack of data on machine-learning-based algorithms for predicting the risk of in-hospital mortality in children with dengue shock syndrome (DSS).

Aim: To develop machine-learning models to estimate the risk of death in hospitalized children with DSS.

Methods: This single-center retrospective study was conducted at tertiary Children's Hospital No. 2 in Viet Nam, between 2013 and 2022. The primary outcome was the in-hospital mortality rate in children with DSS admitted to the pediatric intensive care unit (PICU). Nine significant features were predetermined for further analysis using machine learning models. An oversampling method was used to enhance the model performance. Supervised models, including logistic regression, Naïve Bayes, Random Forest (RF), K-nearest neighbors, Decision Tree and Extreme Gradient Boosting (XGBoost), were employed to develop predictive models. The Shapley Additive Explanation was used to determine the degree of contribution of the features.

Results: In total, 1278 PICU-admitted children with complete data were included in the analysis. The median patient age was 8.1 years (interquartile range: 5.4-10.7). Thirty-nine patients (3%) died. The RF and XGboost models demonstrated the highest performance. The Shapley Addictive Explanations model revealed that the most important predictive features included younger age, female patients, presence of underlying diseases, severe transaminitis, severe bleeding, low platelet counts requiring platelet transfusion, elevated levels of international normalized ratio, blood lactate and serum creatinine, large volume of resuscitation fluid and a high vasoactive inotropic score (> 30).

Conclusion: We developed robust machine learning-based models to estimate the risk of death in hospitalized children with DSS. The study findings are applicable to the design of management schemes to enhance survival outcomes of patients with DSS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948190PMC
http://dx.doi.org/10.5662/wjm.v15.i3.101837DOI Listing

Publication Analysis

Top Keywords

in-hospital mortality
12
machine learning-based
8
learning-based models
8
dengue shock
8
shock syndrome
8
models estimate
8
estimate risk
8
risk death
8
death hospitalized
8
hospitalized children
8

Similar Publications