A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A water solubility prediction algorithm based on the StackBoost model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous solubility, an essential physical property of compounds, has significant applications across various fields. However, verifying the solubility of compounds through experimental methods often requires substantial human and material resources. To address this issue, this study introduces the StackBoost model for predicting the solubility of organic compounds and systematically compares it with five well-known ensemble learning algorithms: Adaptive Boosting (AdaBoost), Gradient Boosted Regression Trees (GBRT), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), and Random Forest (RF). The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination ([Formula: see text]) of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. Furthermore, this study further conducted high-throughput screening on large-scale datasets and successfully identified compounds with high potential for water solubility. Additionally, the model's generalization ability is verified through transfer learning. Although the performance of the StackBoost model decreases when applied to different datasets, it still shows considerable transferability, making it a more generalizable prediction model for aqueous solubility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396764PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330598PLOS

Publication Analysis

Top Keywords

stackboost model
16
aqueous solubility
12
water solubility
8
model aqueous
8
gradient boosting
8
solubility
6
model
5
solubility prediction
4
prediction algorithm
4
algorithm based
4

Similar Publications