Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. ("Advancing material property prediction: using physics-informed machine learning models for viscosity") descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure-property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring's rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392590 | PMC |
http://dx.doi.org/10.1186/s13321-025-01070-9 | DOI Listing |