Mechanistic origins of temperature scaling in the early embryonic cell cycle.

Nat Commun

Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temperature strongly influences physiological and ecological processes, particularly in ectotherms. While complex physiological rates often follow Arrhenius-like scaling, originally formulated for single reactions, the underlying reasons remain unclear. Here, we examine temperature scaling of the early embryonic cell cycle across six ectothermic species, including Xenopus, Danio rerio,  Caenorhabditis, and  Drosophila. We find remarkably consistent apparent activation energies (75  ± 7 kJ/mol), corresponding to a Q of 2.8 at 20°C. Computational modeling shows that both biphasic scaling in key cell cycle components and mismatches in activation energies across partially rate-determining enzymes can explain the observed approximate Arrhenius behavior and its breakdown at temperature extremes. Experimental data from cycling Xenopus extracts and in vitro assays of individual regulators support both mechanisms. These findings provide mechanistic insights into the biochemical basis of temperature sensitivity and the failure of biological processes at thermal limits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394406PMC
http://dx.doi.org/10.1038/s41467-025-62918-0DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
temperature scaling
8
scaling early
8
early embryonic
8
embryonic cell
8
activation energies
8
temperature
5
mechanistic origins
4
origins temperature
4
scaling
4

Similar Publications

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.

View Article and Find Full Text PDF

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

Poultry egg production is shaped by the intertwined action of multiple physiological systems, greatly magnifying the complexity of its underlying genetic regulation. Although multitissue mapping of regulatory variants offers a powerful route to untangle this complexity, comprehensive data sets in ducks remain scarce. Meanwhile, the contributions of peripheral systems beyond neuroendocrine regulation on poultry egg production are still largely unexplored.

View Article and Find Full Text PDF