Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies reveal that Vibrio cholerae secretes virulence factors impacting host cell viability, though their effects on cancer cells remain unclear. However, the bacterial components and mechanisms influencing cancer cells remain largely unknown. This study investigated the effects of V. cholerae mutants lacking secreted proteins on carcinoma cells. We identified the hemagglutinin zinc-metalloprotease HapA as the main factor reducing cancer cell viability. HapA cleaves protease-activated receptors 1 and 2 on epithelial cancer cells at unique sites, unlike human proteases. This cleavage triggers an early and transient activation of the kinases MEK and ERK. Transient MEK and ERK activation initiates caspase 7, leading to apoptosis and reduced viability in epithelial cancer cells. Our findings underscore the significance of human protease-activated receptors as targets for bacterial protease HapA. Furthermore, we demonstrate that selective cleavage of PAR-1/2 by HapA adjusts MEK-ERK signalling dynamics, suggesting potential new avenues for the development of novel anticancer therapies. Understanding how pathogens like V. cholerae interact with cancer cells sheds light on potential mechanisms underlying cancer progression and suggests new therapeutic targets for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394649PMC
http://dx.doi.org/10.1038/s41420-025-02691-7DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cell viability
12
cancer
9
cancer cell
8
cells remain
8
protease-activated receptors
8
epithelial cancer
8
mek erk
8
cells
6
hapa
5

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF