A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The contribution of magnocellular selective adaptation to spatial distance compression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Topographic maps early in visual processing preserve the spatial relations of visual stimuli but the metric relationships between these visual directions is not directly accessible. To investigate the magnocellular pathway's role in metric spatial vision, we employed an adaptation paradigm. Exposure to a 60 Hz flickering disc array (subjectively invisible) induced a systematic compression in the perceived distance between subsequently presented dot pairs. This compression was strongest when adaptation preferentially modulated low spatial frequency channels, consistent with the properties of transient channels tuned to low spatial and high temporal frequencies. Crucially, this compression was attenuated when the adaptor consisted of two cyan lattices rotating on a magenta background near isoluminance, as confirmed by a global motion direction discrimination task. The same pattern emerged when test dots were isoluminant with the background, ruling out test-adaptor similarity as a critical factor. Finally, an isoluminant red-green adaptor flickering on a yellow background induced compression at 3 Hz, but not at 60 Hz. This dissociation aligns with the known properties of magnocellular neurons, which are insesitive to high temporal frequency isoluminant red-green modulation, but can respond to slow isoluminant red-green modulations. These findings reveal a novel role of the magnocellular pathway in metric spatial vision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2025.108680DOI Listing

Publication Analysis

Top Keywords

isoluminant red-green
12
metric spatial
8
spatial vision
8
low spatial
8
high temporal
8
spatial
6
compression
5
contribution magnocellular
4
magnocellular selective
4
selective adaptation
4

Similar Publications