98%
921
2 minutes
20
A class I chitinase from the carnivorous sundew plant Drosera adelae was successfully expressed in the methylotrophic yeast Pichia pastoris and efficiently purified using a chitin affinity column. Enzymatic activity assays revealed that the enzyme showed a specific activity of 235.3 ± 10.2 U·mg. Crystallization of wild-type and E167Q catalytic mutant chitinases yielded needle-like microcrystals. X-ray diffraction experiments were performed, and high-resolution datasets were obtained at 1.73 Å and 1.57 Å, respectively. Structural analysis of diffraction data revealed that only the catalytic domain could be resolved in both crystal forms. Using AutoDock Vina, we performed docking simulations of two (GlcNAc) molecules at eight subsites (+4 to -4) of the catalytic domain of D. adelae chitinase to investigate their binding energies and conformations. Further, the structure of the chitin-binding domain (hevein domain), which could not be resolved by X-ray crystallography, was predicted using alphafold2. Based on this model, the binding conformation and binding energy of (GlcNAc) were analyzed using similar methods. In D. adelae chitinase, a characteristic tyrosine cluster consisting of Tyr174, Tyr199, and Tyr201 formed a unique structural feature that enabled recognition of the (GlcNAc) substrate. The hevein domain structures further indicated that the tyrosine cluster (Tyr41, Tyr43, Tyr50) in D. adelae chitinase may be involved in hydrogen bonding and CH/π interactions with (GlcNAc).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/2211-5463.70110 | DOI Listing |
Oncol Res
September 2025
Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
Objectives: Proteasomes, multi-subunit proteases, are key actors of cellular protein catabolism and a number of regulatory processes. The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development. The current study aimed to identify the role of low molecular mass protein 2 (LMP2), a proteasome immune subunit, in the development of mouse colon 26 (C26) adenocarcinoma.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFJ Insect Physiol
September 2025
Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel. Electronic address:
Cellulose and chitin are the two most abundant polysaccharides on Earth. To digest these structural carbohydrates, herbivorous and omnivorous insects typically rely on cellulases, while insectivorous species often express chitinases. The American cockroach (Periplaneta americana), an extreme generalist omnivore, is known to thrive on a variety of diets.
View Article and Find Full Text PDFCarbohydr Res
September 2025
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:
The growing prevalence of treatment-resistant Candida species highlights an urgent need for innovative antifungal therapies. The current range of antifungals, limited to polyenes, azoles, and echinocandins, are becoming insufficient due to the rise of resistance, including cross-resistance among fungal strains. Marine environment is an underexplored reservoir of unique enzymes which can be extremophilic.
View Article and Find Full Text PDFKidney360
September 2025
Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego California.
Background: CKD is strongly associated with cardiovascular disease (CVD), yet the etiology responsible for this link remains elusive. Novel blood and urine biomarkers reflecting kidney tubule dysfunction and injury may provide novel insights to mechanisms linking the kidney to CVD.
Methods: In 470 participants of the Multi-Ethnic Study of Atherosclerosis (MESA) without type 2 diabetes, CVD or CKD, we measured six plasma (kidney injury molecule-1 [KIM-1], monocyte chemoattractant protein-1 [MCP-1], soluble urokinase plasminogen activator receptor [suPAR], tumor necrosis factor receptor [TNFR] 1 and 2, and anti-chitinase-3-like protein 1 [YKL-40]) and six urinary (alpha 1 microglobulin [A-1M], epidermal growth factor [EGF], KIM-1, MCP-1, YKL-40 and uromodulin [UMOD]) kidney tubule health biomarkers.