Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Neuromodulation is crucial for advancing neuroscience and treating neurological disorders. However, traditional methods using rigid electrodes have been limited by large stimulating currents, low precision, and the risk of tissue damage. In this work, we developed a biocompatible ultraflexible electrode array that allows for both neural recording of spike firings and low-threshold, high-precision stimulation for neuromodulation. Specifically, mouse turning behavior can be effectively induced with approximately five microamperes of stimulating current, which is significantly lower than that required by conventional rigid electrodes. The array's densely packed microelectrodes enable highly selective stimulation, allowing precise targeting of specific brain areas critical for turning behavior. This low-current, targeted stimulation approach helps maintain the health of both neurons and electrodes, as evidenced by stable neural recordings after extended stimulations. Systematic validations have confirmed the durability and biocompatibility of the electrodes. Moreover, we extended the flexible electrode array to a brain-to-brain interface system that allows human brain signals to directly control mouse behavior. Using advanced decoding methods, a single individual can issue eight commands to simultaneously control the behaviors of two mice. This study underscores the effectiveness of the flexible electrode array in neuromodulation, opening new avenues for interspecies communication and potential neuromodulation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380067 | PMC |
http://dx.doi.org/10.1002/EXP.70040 | DOI Listing |