Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Titanium alloys (Ti-6Al-4V) are widely used in the aerospace field. However, as a typical difficult-to-machine material, titanium alloys have a low thermal conductivity, a high chemical activity, and a significant adiabatic shear effect. In conventional milling (CM), the temperature in the cutting zone rises sharply, leading to tool adhesion, rapid wear, and damage to the workpiece surface. This article systematically investigated the influence of process parameters on the surface roughness, cutting force, and cutting temperature in the ultrasonic-vibration-assisted milling (UAM) process of titanium alloys, based on which multi-objective optimization process of the milling process parameters was conducted, by utilizing the grey relational analysis method. An orthogonal experiment with four factors and four levels was conducted. The effects of various process parameters on the surface roughness, cutting force, and cutting temperature were systematically analyzed for both UAM and CM. The grey relational analysis method was employed to transform the optimization problem of multiple process target parameters into a single-objective grey relational degree optimization problem. The optimized parameter combination was as follows: an ultrasonic amplitude of 6 μm, a spindle speed of 6000 rpm, a cutting depth of 0.20 mm, and a feed rate of 200 mm/min. The experimental results indicated that the surface roughness Sa was 0.268 μm, the cutting temperature was 255.39 °C, the cutting force in the X direction (FX) was 5.2 N, the cutting force in the Y direction (FY) was 7.9 N, and the cutting force in the Z direction (FZ) was 6.4 N. The optimization scheme significantly improved the machining quality and reduced both the cutting forces and the cutting temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388664PMC
http://dx.doi.org/10.3390/mi16080936DOI Listing

Publication Analysis

Top Keywords

cutting force
24
surface roughness
16
cutting temperature
16
cutting
13
roughness cutting
12
titanium alloys
12
process parameters
12
grey relational
12
force direction
12
multi-objective optimization
8

Similar Publications

The TTS(through-the-scope)airway stent is a novel self-expanding nitinol alloy metal stent. Its structure and method of implantation differ significantly from those of the traditional OTW(over-the-wire)stent. In this study, we compared the mechanical properties of the TTS and OTW stents, and both of which were implanted into the tracheas of rabbits to compare the differences in complications caused by these two types of stents.

View Article and Find Full Text PDF

Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.

View Article and Find Full Text PDF

The need for total knee arthroplasty (TKA) has grown significantly in recent years. The cutting angle in TKA plays a major role in the functionality and life expectancy of the knee implant components. This study aims to personalize the femur bone cutting angle selection for implant placement.

View Article and Find Full Text PDF

Background: An inward force is experienced by the guide catheter during device retrieval resulting in potential risk of deep engagement into the ostio-proximal coronary segment. This undesired movement can result in coronary injury. There is no systematic data or reports of techniques to prevent such inadvertent guide movement during difficult retrieval of devices.

View Article and Find Full Text PDF

The effect of human bone morphology on sawing forces.

J Mech Behav Biomed Mater

September 2025

Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, 7522 NB, the Kingdom of the Netherlands. Electronic address:

In orthopaedic surgical procedures, bone cutting is often performed with an oscillating saw. Achieving an optimal cut requires high accuracy, low temperature, minimal surgeon effort, and time efficiency, all of which may be influenced by the forces applied on the sawing device, and the microstructure of the cut bone. The relation between bovine bone microstructure and sawing forces has been studied.

View Article and Find Full Text PDF