Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In high-voltage switchgear, partial discharge (PD) detection using six-degree-of-freedom (6-DOF) manipulators presents challenges. However, these involve inverse kinematics (IK) solution redundancy and the lack of synergistic optimization between end-effector positioning accuracy and energy consumption. To address these issues, a dual-layer adaptive optimization model integrating multiple algorithms is proposed. In the first layer, a spatio-temporal correlation particle memory-based particle swarm optimization BP neural network (STPSO-BP) is employed. It replaces traditional IK, while long short-term memory (LSTM) predicts particle movement trends, and trajectory similarity penalties constrain search trajectories. Thereby, positioning accuracy and adaptability are enhanced. In the second layer, a chaotic mapping-based simulated annealing (CM-SA) algorithm is utilized. Chaotic joint angle constraints, dynamic weight adjustment, and dynamic temperature regulation are incorporated. This approach achieves collaborative optimization of energy consumption and positioning error, utilizing cubic spline interpolation to smooth the joint trajectory. Specifically, the positioning error decreases by 68.9% compared with the traditional BP neural network algorithm. Energy consumption is reduced by 60.18% in contrast to the pre-optimization state. Overall, the model achieves significant optimization. An innovative solution for synergistic accuracy-energy control in 6-DOF manipulators for PD detection is offered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389900 | PMC |
http://dx.doi.org/10.3390/s25165214 | DOI Listing |