98%
921
2 minutes
20
The inherent limitations of individual AI models underscore the need for robust anomaly detection techniques for securing autonomous driving systems. To address these limitations, we propose a comprehensive ensemble learning framework specifically designed for anomaly detection in autonomous driving systems. We comprehensively assess the effectiveness of ensemble learning models for detecting anomalies in autonomous vehicle datasets, focusing primarily on the VeReMi and Sensor datasets. Ensemble techniques are rigorously evaluated against individual models on binary and multiclass classification tasks. The analysis reveals that ensemble models consistently outperform individual models in terms of accuracy, precision, recall, false positive rates, and F1-score. On the VeReMi dataset, ensembles achieve high performance for binary classification, with a maximum accuracy of 0.80 and F1-score of 0.86, surpassing single models. For the Sensor dataset, ensemble models like CatBoost exhibit perfect accuracy, precision, recall, and F1-score, exceeding single models by 11% in accuracy. In VeReMi multiclass classification, Stacking and Blending gave a 5% increase in accuracy compared to single models. Moreover, XGBoost and CatBoost demonstrate perfect recall. Our proposed method enhanced performance despite the increased runtime required by ensemble models. In evaluating false positive rates, ensemble learning demonstrated significant gains, reducing false positives and thereby enhancing overall system reliability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389909 | PMC |
http://dx.doi.org/10.3390/s25165105 | DOI Listing |
PLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFPLoS One
September 2025
Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America.
In the event of a large-scale radiological or nuclear emergency, a rapid, high-throughput screening tool will be essential for efficient triage of potentially exposed individuals, optimizing scarce medical resources and ensuring timely care. The objective of this work was to characterize the effects of age and sex on two intracellular lymphocyte protein biomarkers, BAX and p53, for early radiation exposure classification in the human population, using an imaging flow cytometry-based platform for rapid biomarker quantification in whole blood samples. Peripheral blood samples from male and female donors, across three adult age groups (young adult, middle-aged, senior) and a juvenile cohort, were X-irradiated (0-5 Gy), and biomarker expression was quantified at two- and three-days post-exposure.
View Article and Find Full Text PDFMultivariate Behav Res
September 2025
Department of Statistics, TU Dortmund University, Dortmund, Germany.
Predicting ordinal responses such as school grades or rating scale data is a common task in the social and life sciences. Currently, two major streams of methodology exist for ordinal prediction: traditional statistical models such as the proportional odds model and machine learning (ML) methods such as random forest (RF) adapted to ordinal prediction. While methods from the latter stream have displayed high predictive performance, particularly for data characterized by non-linear effects, most of these methods do not support hierarchical data.
View Article and Find Full Text PDFHealth Econ
September 2025
The CHOICE Institure, School of Pharmacy, University of Washington, Seattle, Washington, USA.
This paper demonstrates how optimal policy learning can inform the targeted allocation of Indonesia's two subsidized health insurance programmes. Using national survey data, we develop policy rules aimed at minimizing "catastrophic health expenditure" among enrollees of APBD or APBN, the two government-funded schemes. Employing a super learner ensemble approach, we use regression and machine learning methods of varying complexity to estimate conditional average treatment effects and construct policy rules to optimize program benefits, both with and without budget constraints.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
To a large extent, the food security and ecological balance of a region, particularly in agriculturally dominated areas, largely depend on the sustainable use and management of groundwater resources. However, in recent times, both natural and human-driven factors have heavily impacted the lowering of groundwater resources. Therefore, the present study has been carried out in a drought-prone region of Birbhum district, part of the red-lateritic agro-climatic zone of West Bengal, Eastern India, to delineate groundwater potential zones (GWPZs).
View Article and Find Full Text PDF