Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), Wheel Odometry (Odom), and Ultra-Wideband (UWB). An Extended Kalman Filter (EKF) is employed to integrate IMU and Odom measurements through a complementary filtering model, while a geometric residual-based weighting mechanism is introduced to optimize raw UWB ranging data. This enhances the accuracy and robustness of both the prediction and observation stages. All evaluations were conducted in a simulated environment, including scenarios on flat plates and spherical tank-shaped steel surfaces. The proposed method maintained a maximum localization error within 5 cm in both linear and closed-loop trajectories and achieved over 30% improvement in horizontal accuracy compared to baseline EKF-based approaches. The system exhibited consistent localization performance across varying surface geometries, providing technical support for robotic operations on large steel infrastructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390187 | PMC |
http://dx.doi.org/10.3390/s25165051 | DOI Listing |