A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Convolution of Barker and Mutually Orthogonal Golay Complementary Codes for Ultrasonic Testing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultrasonic testing (UT) is a vital nondestructive testing (NDT) technique used to evaluate the integrity of materials and structures. However, conventional excitation signals often suffer from significant attenuation in highly attenuative materials, resulting in low signal energy and poor signal interpretation. Coded excitation techniques, such as the Barker code and the complementary Golay code (CGC), have been used to enhance signal energy and signal-to-noise ratio. Yet, Barker codes are limited by short sequence lengths, while CGC requires two transmission events, reducing time efficiency. This paper proposes a novel excitation method: the Barker-convolved mutually orthogonal Golay complementary code (BMOGCC). By convolving the Barker code with the mutually orthogonal Golay complementary code (MOGCC), BMOGCC combines the advantages of both, including flexibility in code length, improved signal amplitude, low sidelobe levels, and enhanced time efficiency. Performance was evaluated using numerical simulations and laboratory experiments, with key indices including the peak sidelobe level (PSL), mainlobe gain (MG), and temporal resolution. The results show that BMOGCC achieves a significantly higher MG than either the Barker code or MOGCC alone while maintaining a low PSL and preserving the temporal resolution. These findings demonstrate that BMOGCC is effective and efficient for coding excitation signals in ultrasonic testing, offering improved signal quality and measurement time efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390228PMC
http://dx.doi.org/10.3390/s25165007DOI Listing

Publication Analysis

Top Keywords

mutually orthogonal
12
orthogonal golay
12
golay complementary
12
ultrasonic testing
12
barker code
12
time efficiency
12
excitation signals
8
signal energy
8
complementary code
8
code mogcc
8

Similar Publications