Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-resolution and three-dimensional measurements at large scales represent a crucial frontier in flow diagnostics. Color-encoded illumination particle imaging velocimetry has emerged as a promising non-contact volumetric measurement technique in recent years. By employing chromatic gradient illumination to excite tracer particles, this method encodes depth information into color signatures, which are then correlated with two-dimensional positional data in images to reconstruct three-dimensional flow fields using a single camera. This review first introduces the fundamental principles of particle image velocimetry/particle tracking velocimetry and chromatic-depth encoding. Subsequently, we categorize color-depth-encoded particle velocimetry methods based on different illumination strategies, including LED-based, projector-based, and laser-based systems, discussing their respective configurations and representative applications. Finally, we summarize the current research progress in color-encoded particle image velocimetry techniques, provide a comparative analysis of their advantages and limitations, and discuss existing challenges along with future development prospects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390468PMC
http://dx.doi.org/10.3390/s25164981DOI Listing

Publication Analysis

Top Keywords

particle imaging
8
imaging velocimetry
8
color-encoded illumination
8
particle image
8
particle
5
velocimetry
5
velocimetry color-encoded
4
illumination
4
illumination review
4
review high-resolution
4

Similar Publications

Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.

View Article and Find Full Text PDF

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Linear magnetic nanoparticle structures as key feature in magnetic particle imaging.

Phys Med Biol

September 2025

Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University Medical Faculty, Pauwelsstraße 20, Aachen, 52074, GERMANY.

Objective: Magnetic particle imaging (MPI) opens huge possibilities in image-guided therapy. Its effectiveness is strongly influenced by the quality of the magnetic nanoparticles (MNP) used as tracers. Besides MNP optimization following different synthesis routes, MNP assembly into linear structures can significantly enhance their performance in MPI.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles - From synthesis to nanomedicine.

Biochem Biophys Res Commun

August 2025

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.

View Article and Find Full Text PDF

In silico biophysics and rheology of blood and red blood cells in Gaucher Disease.

PLoS Comput Biol

September 2025

Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.

Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.

View Article and Find Full Text PDF