Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Wearable sensors are a promising tool for the remote, continuous monitoring of motor symptoms and physical activity, especially in individuals with neurological or chronic conditions. Despite many experimental trials, clinical adoption remains limited. A major barrier is the lack of awareness and confidence among healthcare professionals in these technologies.
Methods: This systematic review analyzed the use of wearable sensors for continuous motor monitoring at home, focusing on their purpose, type, feasibility, and effectiveness in neurological, musculoskeletal, or rheumatologic conditions. This review followed PRISMA guidelines and included studies from PubMed, Scopus, and Web of Science.
Results: Seventy-two studies with 7949 participants met inclusion criteria. Neurological disorders, particularly Parkinson's disease, were the most frequently studied. Common sensors included inertial measurement units (IMUs), accelerometers, and gyroscopes, often integrated into medical devices, smartwatches, or smartphones. Monitoring periods ranged from 24 h to over two years. Feasibility studies showed high patient compliance (≥70%) and good acceptance, with strong agreement with clinical assessments. However, only half of the studies were controlled trials, and just 5.6% were randomized.
Conclusions: Wearable sensors offer strong potential for real-world motor function monitoring. Yet, challenges persist, including ethical issues, data privacy, standardization, and healthcare access. Artificial intelligence integration may boost predictive accuracy and personalized care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389529 | PMC |
http://dx.doi.org/10.3390/s25164889 | DOI Listing |