A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rare earth elements (REEs) and trace elements, due to their relative stability during sedimentary processes, are effective geochemical proxies for sediment provenance. In the Dongdaohaizi Depression of the eastern Junggar Basin, the provenance of the Middle Jurassic Sangonghe Formation remains contentious. In this study, representative sandstone samples were systematically collected from all three members of the Sangonghe Formation in both the Dongdaohaizi Depression and its western margin. Through comprehensive petrographic and geochemical analyses, we obtained the following results. The Sangonghe Formation is primarily composed of feldspathic lithic sandstones, lithic sandstones, and minor lithic-feldspathic sandstones. The heavy mineral assemblage includes zircon, garnet, chromite, and rutile, suggesting source rocks of intermediate to acidic igneous, metamorphic, and mafic lithologies. The total REE contents range from 101.84 to 192.68 μg/g, with an average of 161.80 μg/g. The ∑LREE/∑HREE ratios vary from 6.59 to 13.25 (average 10.96), and the average δEu values are close to 1. The δCe value ranges from 1.09 to 1.13 (average 1.11). Trace element discrimination diagrams, including La-Th-Sc, Th-Co-Zr/10, Th-Sc-Zr/10, and La/Y-Sc/Cr ternary plots, indicate that most samples fall within the continental island arc domain, with a few plotting in the passive continental margin field. Comparison with potential surrounding source regions reveals dual provenances: an eastern source from the Kalamaili Mountains and a western source from the Zhayier Mountains. During the Early Jurassic, these two orogenic belts acted as distinct sediment sources. The Zhayier Mountains provided stronger input, with fluvial and tidal processes transporting sediments into the basin, establishing the primary subsidence center in the west of the depression. By the Middle Jurassic, continued thrusting of surrounding fold belts caused a migration of the lake center and the main depocenter to the western edge of the Dongdaohaizi Depression, while the former depocenter gradually diminished. Furthermore, sustained erosion and denudation of the Mosowan Uplift during the Early-Middle Jurassic reduced its function as a structural barrier, thereby promoting increased mixing between eastern and western sediment sources. The study not only refines existing paleogeographic models of the Junggar Basin, but also demonstrates the utility of REE-trace geochemistry in deciphering complex provenance systems in tectonically active basins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388752PMC
http://dx.doi.org/10.3390/molecules30163399DOI Listing

Publication Analysis

Top Keywords

dongdaohaizi depression
12
sangonghe formation
12
eastern junggar
8
junggar basin
8
middle jurassic
8
lithic sandstones
8
zhayier mountains
8
sediment sources
8
provenance
4
provenance tectonic
4

Similar Publications