A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Uropathogenic in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recurrent urinary tract infections (UTIs) pose a significant clinical challenge in both human and veterinary medicine, due to antibiotic-resistant and biofilm-forming bacteria. We hypothesized that high glucose levels in diabetic animals enhance biofilm formation and reduce antibiotic efficacy, promoting infection persistence. This study analyzed from a diabetic female Labrador Retriever with recurrent UTIs over 18 months, focusing on antimicrobial resistance, biofilm-forming capacity, and genomic characterization. Most isolates (9/11) were resistant to ampicillin and fluoroquinolones. Whole genome sequencing of six selected isolates revealed that they belonged to the multidrug-resistant ST1193 lineage, a globally emerging clone associated with persistent infections. Phylogenetic analysis revealed clonal continuity across six UTI episodes, with two distinct clones identified: one during a coinfection in the second episode and another in the last episode. High-glucose conditions significantly enhanced biofilm production and dramatically reduced antibiotic susceptibility, as evidenced by a marked increase in minimum biofilm inhibitory concentrations (MBICs), which were at least 256-fold higher than the corresponding minimum inhibitory concentration (MIC). Sulfamethoxazole-trimethoprim demonstrated the strongest antibiofilm activity, though this was attenuated in glucose-supplemented environments. This research highlights the clinical relevance of glucosuria in diabetic patients and emphasizes the need for therapeutic strategies targeting biofilm-mediated antibiotic tolerance to improve the management of recurrent UTIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388685PMC
http://dx.doi.org/10.3390/microorganisms13081946DOI Listing

Publication Analysis

Top Keywords

recurrent utis
12
biofilm formation
8
uropathogenic diabetic
4
diabetic dog
4
recurrent
4
dog recurrent
4
utis
4
utis genomic
4
genomic insights
4
insights impact
4

Similar Publications