98%
921
2 minutes
20
Most of the knowledge available on the composition and functionality of microbial communities in different ecosystems comes from short-read sequencing methods. It implies limitations regarding taxonomic resolution, variant detection, and genome assembly contiguity. Long-read sequencing technologies can overcome these limitations, transforming the analysis of microbial community composition and functionality. It is essential to understand the characteristics of each sequencing technology to select the most suitable one for each microbiome study. This review aims to show how long-read sequencing methods have revolutionized microbiome analysis in ecosystems and to provide a practical tool for selecting sequencing methods. To this end, the evolution of sequencing technologies, their advantages and disadvantages for microbiome studies, and the new dimensions enabled by long-read sequencing technologies, such as virome and epigenetic analysis, are described. Moreover, desirable characteristics for microbiome sequencing technologies are proposed, including a visual comparison of available sequencing platforms. Finally, amplicon and metagenomics approaches and the sequencing depth are discussed when using long-read sequencing technologies in microbiome studies. In conclusion, although no single sequencing method currently possesses all the ideal features for microbiome analysis in ecosystems, long-read sequencing technologies represent an advancement in key aspects, including longer read lengths, higher accuracy, shorter runtimes, higher output, more affordable costs, and greater portability. Therefore, more research using long-read sequencing is recommended to strengthen its application in microbiome analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388134 | PMC |
http://dx.doi.org/10.3390/microorganisms13081861 | DOI Listing |
Nat Biotechnol
September 2025
European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
The size of microbial sequence databases continues to grow beyond the abilities of existing alignment tools. We introduce LexicMap, a nucleotide sequence alignment tool for efficiently querying moderate-length sequences (>250 bp) such as a gene, plasmid or long read against up to millions of prokaryotic genomes. We construct a small set of probe k-mers, which are selected to efficiently sample the entire database to be indexed such that every 250-bp window of each database genome contains multiple seed k-mers, each with a shared prefix with one of the probes.
View Article and Find Full Text PDFNature
September 2025
Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.
View Article and Find Full Text PDFGenomics
September 2025
Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego str. 12/14, 61-704 Poznań, Poland. Electronic address:
Despite advancements in genome annotation tools, challenges persist for non-classical model organisms with limited genomic resources, such as Schmidtea mediterranea. To address these challenges, we developed a flexible and scalable genome annotation pipeline that integrates short-read (Illumina) and long-read (PacBio) sequencing technologies. The pipeline combines reference-based and de novo assembly methods, effectively handling genomic variability and alternative splicing events.
View Article and Find Full Text PDFCell
September 2025
The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA 92037, USA; Marine Biology Research Division, Scripps Instituti
The human gut microbiome is linked to child malnutrition, yet traditional microbiome approaches lack resolution. We hypothesized that complete metagenome-assembled genomes (cMAGs), recovered through long-read (LR) DNA sequencing, would enable pangenome and microbial genome-wide association study (GWAS) analyses to identify microbial genetic associations with child linear growth. LR methods produced 44-64× more cMAGs per gigabase pair (Gbp) than short-read methods, with PacBio (PB) yielding the most accurate and cost-effective assemblies.
View Article and Find Full Text PDFMicrob Genom
September 2025
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Amplicon sequencing is a popular method for understanding the diversity of bacterial communities in samples containing multiple organisms as exemplified by 16S rRNA sequencing. Another application of amplicon sequencing includes multiplexing both primer sets and samples, allowing sequencing of multiple targets in multiple samples in the same sequencing run. Multiple tools exist to process the amplicon sequencing data produced via the short-read Illumina platform, but there are fewer options for long-read Oxford Nanopore Technologies (ONT) sequencing, or for processing data from environmental surveillance or other sources with many different organisms.
View Article and Find Full Text PDF