Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The increasing demand for environmentally friendly alternatives to conventional plastic packaging has driven interest in the development of biodegradable edible films with functional properties. In this work, edible blend films were developed based on fish gelatin (FG), soluble soybean polysaccharide (SSPS), and tea polyphenol (TP) for active food packaging applications. The FG/SSPS/TP films were prepared by solvent casting and characterized in terms of their structural, mechanical, optical, thermal, and barrier properties. FTIR, SEM, and XRD analyses revealed TP-induced morphological and structure changes in the biopolymer matrix. The incorporation of TP significantly enhanced the antioxidant activity and UV-shielding properties of the films, while also modifying their flexibility and surface hydrophilicity. The packaging performance of FG/SSPS/TP films was evaluated using beef tallow as a model food product. Compared to neat FG/SSPS and polyethylene films, the FG/SSPS/TP films effectively suppressed lipid oxidation of the samples during storage. The results demonstrated that the prepared FG/SSPS/TP films possess strong potential for use as edible and active packaging materials for food products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388913 | PMC |
http://dx.doi.org/10.3390/polym17162174 | DOI Listing |