Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By integrating statistical modeling and data analysis techniques, we systematically assess the carbon emission performance of the ceramic industry and propose targeted emission reduction pathways. Firstly, the entropy weight TOPSIS model is employed to quantitatively evaluate the carbon emission performance of the three major Chinese ceramic production areas: Foshan, Jingdezhen, and Zibo. Through data-driven quantitative analysis, it is disclosed that the carbon emission intensity in Foshan is significantly higher than that in the other two regions (with a relative closeness degree of 0.5185). The key issues identified include high energy consumption in the production process, a high reliance on raw coal, and insufficient investment in environmental protection. Furthermore, through the XGBoost-SHAP combined modeling, the key drivers of carbon emissions are precisely identified from multi-dimensional data. It is found that the elasticity coefficient of raw coal in the carbon emission proportion is as high as 25.84%, while the potential for substitution with natural gas is remarkable. Based on statistical prediction techniques, a carbon emission trend model under the scenario of energy structure optimization is constructed, predicting that after reaching a peak in 2017, Foshan's carbon emissions will continue to decline, with the proportion of raw coal dropping to 48% and that of natural gas rising to 10%, thereby verifying the feasibility of the green transformation. Additionally, a multi-agent carbon trading simulation model is constructed to explore the emission reduction behaviors of enterprises under different carbon price scenarios. This study not only achieves precise quantitative analysis of carbon emissions through statistical method innovation but also verifies the feasible paths of low-carbon transformation through data modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385242PMC
http://dx.doi.org/10.3390/e27080872DOI Listing

Publication Analysis

Top Keywords

carbon emission
28
carbon
12
emission reduction
12
raw coal
12
carbon emissions
12
emission
9
ceramic industry
8
emission performance
8
quantitative analysis
8
natural gas
8

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.

View Article and Find Full Text PDF

Correction: Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity.

Nanoscale

September 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.

View Article and Find Full Text PDF

This article presents a holistic research agenda to address the significant environmental impact of information and communication technology (ICT), which accounts for 2.1%-3.9% of global greenhouse gas emissions.

View Article and Find Full Text PDF

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF