Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In hyperspectral image (HSI) classification, feature learning and label accuracy play a crucial role. In actual hyperspectral scenes, however, noisy labels are unavoidable and seriously impact the performance of methods. While deep learning has achieved remarkable results in HSI classification tasks, its noise-resistant performance usually comes at the cost of feature representation capabilities. High-dimensional and deep convolution can capture rich deep semantic features, but with high complexity and resource consumption. To deal with these problems, we propose a CViT Weakly Supervised Network (CWSN) for HSI classification. Specifically, a lightweight 1D-2D two-branch network is used for local generalization and enhancement of spatial-spectral features. Then, the fusion and characterization of local and global features are achieved through the CNN-Vision Transformer (CViT) cascade strategy. The experimental results on four benchmark HSI datasets show that CWSN has good anti-noise ability and ensures the robustness and versatility of the network facing both clean and noisy training sets. Compared to other methods, the CWSN has better classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385884 | PMC |
http://dx.doi.org/10.3390/e27080869 | DOI Listing |