Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper describes a crowdsourced experiment in which participants were asked to judge which of two simultaneously presented facial images (one real, one AI-generated) was fake. With the growing presence of synthetic imagery in digital environments, cognitive systems must adapt to novel and often deceptive visual stimuli. Recent developments in cognitive science propose that some mental processes may exhibit quantum-like characteristics, particularly in their context sensitivity. Drawing on Tezzin's "generalized fair coin" model, this study applied Contextuality-by-Default (CbD) theory to investigate whether human judgments of human faces exhibit quantum-like contextuality. Across 20 trials, each treated as a "generalized coin", bootstrap resampling (10,000 iterations per coin) revealed that nine trials demonstrated quantum-like contextuality. Notably, Coin 4 exhibited strong context-sensitive causal asymmetry, where both the real and synthetic faces elicited inverse judgments due to their unusually strong resemblance to one another. These results support the growing evidence that cognitive judgments are sometimes quantum-like contextual, suggesting that adopting comparative strategies, such as evaluating unfamiliar faces alongside known-real exemplars, may enhance accuracy in detecting synthetic images. Such pairwise methods align with the strengths of human perception and may inform future interventions, user interfaces, or educational tools aimed at improving visual judgment under uncertainty.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386047 | PMC |
http://dx.doi.org/10.3390/e27080868 | DOI Listing |