Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Silicene is a two-dimensional silicon monolayer with a band gap caused by relatively strong spin-orbit coupling. This band gap can be steered using a vertical electric field. In turn, the change in this electric field value leads to a transition from a topological insulator to a bulk insulator regime. This study aims to develop a phase-space approach to detecting the topological phase transitions in silicene induced by the presence of parallel magnetic and electric fields with the aid of the concept of topological quantum number based on the Wigner-Rényi entropy. A reinterpreted definition of the Wigner distribution function is employed to determine this indicator. The topological phase transition in silicene as a function of the electric field in the presence of the magnetic field is confirmed through the use of the topological quantum number determined for the one-half, Shannon and collision entropies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386112 | PMC |
http://dx.doi.org/10.3390/e27080857 | DOI Listing |