Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We propose a novel interpretability framework that integrates instance-wise feature selection with causal reasoning to explain decisions made by black-box image classifiers. Instead of relying on feature importance or mutual information, our method identifies input regions that exert the greatest causal influence on model predictions. Causal influence is formalized using a structural causal model and quantified via a conditional mutual information term. To optimize this objective efficiently, we employ continuous subset sampling and the matrix-based Rényi's α-order entropy functional. The resulting explanations are compact, semantically meaningful, and causally grounded. Experiments across multiple vision datasets demonstrate that our method outperforms existing baselines in terms of predictive fidelity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385936 | PMC |
http://dx.doi.org/10.3390/e27080814 | DOI Listing |