Adaptation and Bonding of Bulk-Fill Composites in Deep Preparations.

Materials (Basel)

Biomimetics Biomaterials Biophotonics Biomechanics & Technology (B4T), Department of Restorative Dentistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymerization shrinkage in resin-based composites can lead to gap formation at the tooth-restoration interface, potentially compromising the long-term success of restorations. Bulk-fill composites have been developed to reduce shrinkage stress, but their adaptation and bond strength-especially in deep cavities-remain areas of concern. This study investigated the adaptation and bond strength of a newly developed dual-cure bulk-fill composite in 4 mm deep preparations compared to light-cured and self-adhesive bulk-fill composites in six groups. Standard composite molds were used to observe and measure sealed floor area (SFA%) of the composite after the polymerization process under optical coherence tomography (OCT) imaging. Micro-tensile bond strength (MTBS) testing was conducted in extracted human teeth. OCT showed that the prototype dual-cure composites had the lowest gap formation during polymerization (SFA 91%), while the self-adhesive composite demonstrated the highest debonding from the cavity floor (SFA 26%, < 0.001). For MTBS analysis, the lowest mean bond strength was recorded for the self-adhesive composite (~21 MPa) and the highest for a light-cured bulk-fill (~50 MPa, < 0.05). Overall, the dual-cure bulk-fill composites exhibited less gap formation than the light-cured ones. The prototype dual-cure material with 90 s waiting before light-curing showed the best adaptation. However, these differences were not reflected in the bond strength values to the cavity floor dentin using the universal adhesive used in the current study, as the light-cured composite showed the highest bond strength values. The self-adhesive composite showed the poorest results in both experiments, indicating that the application of a bonding system is still necessary for better adaptation and bonding to the cavity floor dentin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387279PMC
http://dx.doi.org/10.3390/ma18163790DOI Listing

Publication Analysis

Top Keywords

bond strength
20
bulk-fill composites
16
gap formation
12
self-adhesive composite
12
cavity floor
12
adaptation bonding
8
deep preparations
8
adaptation bond
8
dual-cure bulk-fill
8
prototype dual-cure
8

Similar Publications

Enhancing bonding and durability of polyaryletherketone (PAEK) restorations with nonthermal plasma activation and monomer-based priming.

J Prosthet Dent

September 2025

Associate Professor, School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC. Electronic address:

Statement Of Problem: While valued for their durability in dental prosthetics, polyaryletherketone (PAEK) materials, known for their chemical inertness and low surface energy, pose significant challenges in achieving durable adhesion to resin cements, a critical factor for the long-term success of dental restorations.

Purpose: This study evaluates the novel application of a methyl methacrylate-urethane dimethacrylate (MMA-UDMA) bonding primer following handheld nonthermal plasma (HNP) treatment to enhance the bonding performance and aging durability of PAEK materials with varying microfiller compositions, addressing the persistent challenge of achieving long-term adhesion in dental restorations.

Material And Methods: Three PAEK types, ceramic-filled polyetheretherketone (PEEK), titanium dioxide-filled polyetherketoneketone (PEKK), and PEEK with disk shape (Ø10×2.

View Article and Find Full Text PDF

Introduction: This study investigated the effect of sandblasting time and primer type on the shear bond strength of composite attachments to full-contour zirconia crowns.

Methods: A total of 108 zirconia specimens were fabricated and divided into 9 groups (n = 12) according to sandblasting time (10, 30, and 60 seconds) and primer type (silane, 10-methacryloyloxydecyl dihydrogen phosphate [MDP], universal). After sandblasting with 110-μm alumina particles, specimens were primed, and attachments were bonded using a packable composite.

View Article and Find Full Text PDF

Bonding-Guided Anisotropic Growth of Quasi-1D MXSe Thermoelectric Nanowires.

Small

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.

View Article and Find Full Text PDF

The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF