Effects of Temperature-Control Admixtures on Shrinkage and Mechanical Properties of Fly Ash Concrete: Experiments and Modeling.

Materials (Basel)

Department of Architecture, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino Wakamatsu, Kitakyushu, Fukuoka 8080135, Japan.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mitigation of early-age shrinkage and thermal cracking remains a pressing challenge in mass concrete structures. This study introduces a novel temperature-control admixture (TCA), formulated with gel-forming inorganic compounds, designed to suppress internal temperature rise while improving the mechanical stability of fly ash concrete. Four concrete mixes with TCA dosages of 0, 0.05, 0.10, and 0.15% were experimentally evaluated under controlled environmental conditions. Results show that the optimal dosage of 0.10% achieved a 27.3% reduction in shrinkage and a 12.2% increase in compressive strength at 28 days compared to the control. Furthermore, existing shrinkage models (Eurocode 2, fib Model Code 2010, AS 3600, Bazant B4) consistently overestimated shrinkage by up to 294% due to their inability to capture TCA-induced modifications in hydration and moisture transport. To address this, a modified prediction model incorporating admixture and fly ash-dependent correction factors was proposed, reducing the mean prediction error to just 10% and achieving a coefficient of variation as low as 0.08. This work provides a semi-empirical modeling approach that captures the influence of microencapsulated TCAs on concrete shrinkage and offers useful insights for the design and optimization of advanced concrete systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387844PMC
http://dx.doi.org/10.3390/ma18163757DOI Listing

Publication Analysis

Top Keywords

fly ash
8
ash concrete
8
shrinkage
6
concrete
6
effects temperature-control
4
temperature-control admixtures
4
admixtures shrinkage
4
shrinkage mechanical
4
mechanical properties
4
properties fly
4

Similar Publications

Pollution from past industrial activities can remain unnoticed for years or even decades because the pollutant has only recently gained attention or been identified by measurements. Modeling the emission history of pollution is essential for estimating population exposure and apportioning potential liability among stakeholders. This paper proposes a novel approach for reconstructing the history of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) pollution from municipal solid waste incinerators (MSWIs) with unknown past emissions.

View Article and Find Full Text PDF

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF

The disposal of municipal solid waste incineration fly ashes (MSWI-FA) is complicated by soluble chlorides, which increase the risk of heavy metals (HMs) leaching toxicity and hinder the further use of remediated MSWI-FA. In this study, the self-assembly potentiality of magnesium oxychloride cement (MOC) in geopolymerization was explored and utilized to enhance the solidification/stabilization (S/S) of the MSWI-FA. The MOC-self-assembled geopolymerization kinetics can be suitably described by the JMAK model.

View Article and Find Full Text PDF

Coal blending in thermal power plants is a complex multi-objective challenge involving economic, operational and environmental considerations. This study presents a Q-learning-enhanced NSGA-II (QLNSGA-II) algorithm that integrates the adaptive policy optimization of Q-learning with the elitist selection of NSGA-II to dynamically adjust crossover and mutation rates based on real-time performance metrics. A physics-based objective function takes into account the thermodynamics of ash fusion and the kinetics of pollutant emission, ensuring compliance with combustion efficiency and NOx limits.

View Article and Find Full Text PDF

This present investigation focuses on desulphurization of high sulphur North-East Indian coal under ultrasonic and microwave irradiation-aided chemical leaching. The powdered coal was treated under four different conditions, such as alkali leaching under low-energy ultrasound energy (US), acid leaching under ultra-high frequency microwave energy (MW), ultrasonic followed by microwave treatment (US-MW) and microwave followed by ultrasonic treatment (MW-US). The ultrasonic treatment was conducted using 0.

View Article and Find Full Text PDF