98%
921
2 minutes
20
This study assesses how different anode materials influence neutron production rates (NPRs) in multi-state fusion (MSF) reactors, with a particular focus on the effects of deuterium (D) pre-loading on the anode surface. Three types of mesh anodes were assessed: stainless steel (SS), zirconium (Zr), and D pre-loaded zirconium (ZrD). MSF operates using two electrodes to confine ions to various fusion reactions, including D-D and D-T. The reactor features a negatively biased central cathode and a grounded anode within a vacuum vessel. Neutrons and protons are produced through the application of high voltage (tens of kV) and current (tens of mA) on the system to spark the plasma and start the fusion. Assessments at voltages up to 50 kV and currents up to 30 mA showed that Zr mesh anodes produced higher NPRs than SS ones, reaching 1.912 at 30 kV. This increased performance is attributed to surface fusion processes occurring in the anode. These processes were further modified by the deuterium pre-loading in the ZrD anode, as compared to SS and Zr with 1.832 at 30 kV. The findings suggest that material properties and deuterium pre-loading play significant roles in optimizing the efficiency of MSF reactors and the NPR. Future research may explore the long-term stability and durability of these anode materials under continuous operation conditions to fully harness their potential in fusion energy applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387689 | PMC |
http://dx.doi.org/10.3390/ma18163734 | DOI Listing |
Materials (Basel)
August 2025
School of Physics, University of Bristol, Bristol BS8 1TL, UK.
This study assesses how different anode materials influence neutron production rates (NPRs) in multi-state fusion (MSF) reactors, with a particular focus on the effects of deuterium (D) pre-loading on the anode surface. Three types of mesh anodes were assessed: stainless steel (SS), zirconium (Zr), and D pre-loaded zirconium (ZrD). MSF operates using two electrodes to confine ions to various fusion reactions, including D-D and D-T.
View Article and Find Full Text PDF