98%
921
2 minutes
20
Dental caries is now recognised as a multifactorial disease shaped by complex interactions among genetic, epigenetic, microbiological, environmental, and social factors. This narrative review synthesises recent findings on the influence of genetic and epigenetic factors on caries susceptibility, exploring implications for personalised prevention strategies, including novel vaccine approaches. Numerous gene polymorphisms in pathways related to enamel formation, saliva composition, immune response, and taste perception have been linked to increased caries risk, with some effects modulated by sex and tooth-specific factors. Early-life environmental exposures (diet, tobacco, and antibiotic use) have been demonstrated to further alter risk through epigenetic modifications such as DNA methylation, microRNA regulation, and histone changes. The recognition of this landscape of inherited and acquired vulnerabilities has given rise to interest in innovative preventive measures. In particular, anti-caries vaccines targeting are being developed using protein subunits, DNA constructs, and even plant-based antigen production. Notwithstanding the challenges that still need to be overcome-chiefly the achievement of robust mucosal immunity, the assurance of safety, and the enhancement of production-these vaccines are proving to be a promising addition to traditional oral hygiene and fluoride measures. The integration of genetic and epigenetic insights with immunological advances has the potential to facilitate the development of more effective, personalised interventions to prevent dental caries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385391 | PMC |
http://dx.doi.org/10.3390/genes16080952 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).
Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).
Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.
Plant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.
View Article and Find Full Text PDFJ Biomed Sci
September 2025
Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDF