98%
921
2 minutes
20
Non-small cell lung cancer (NSCLC), the most prevalent type of lung cancer, includes subtypes such as adenocarcinoma (ADC) and squamous cell carcinoma (SCC), which require distinct management approaches. Accurately differentiating NSCLC subtypes based on diagnostic imaging remains challenging. However, the extraction of radiomic features-such as first-order statistics (FOS), second-order statistics (SOS), and fractal dimension texture analysis (FDTA) features-from magnetic resonance (MR) images supports the development of quantitative NSCLC assessments. This study aims to evaluate whether the integration of FDTA features with FOS and SOS texture features in MR image analysis improves machine learning classification of NSCLC into ADC and SCC subtypes. The study was conducted on 274 MR images, comprising ADC (n = 122) and SCC (n = 152) cases. From the segmented MR images, 93 texture features were extracted. The random forest algorithm was used to identify informative features from both FOS/SOS and combined FOS/SOS/FDTA datasets. Subsequently, the k-nearest neighbors (kNN) algorithm was applied to classify MR images as ADC or SCC. The highest performance (accuracy = 0.78, precision = 0.81, AUC = 0.89) was achieved using 37 texture features selected from the combined FOS/SOS/FDTA dataset. Incorporating fractal descriptors into the texture-based classification of lung MR images enhances the differentiation of NSCLC subtypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386986 | PMC |
http://dx.doi.org/10.3390/jcm14165776 | DOI Listing |
JAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.
Minerva Surg
September 2025
Unit of Geriatric Medicine, Department of Emergency, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China -
J Neurooncol
September 2025
Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
Purpose: Frailty measures are critical for predicting outcomes in metastatic spine disease (MSD) patients. This study aimed to evaluate frailty measures throughout the disease process.
Methods: This retrospective analysis measured frailty in MSD patients at multiple time points using a modified Metastatic Spinal Tumor Frailty Index (MSTFI).
J Robot Surg
September 2025
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.
To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany.
Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.
View Article and Find Full Text PDF