98%
921
2 minutes
20
Metabolic syndrome (MetS) is a worldwide problem affecting at least one-third of the population. MetS patients have increased cardiovascular risk associated with an abnormal β-adrenergic response; however, it is not clear how MetS affects the cardiac β-adrenergic system. We analyzed cardiac function and the β-adrenergic response in an experimental model of MetS in rats by recording pressure-volume (PV) loops via an open-chest approach and performed a biochemical characterization of the cardiac β-adrenergic system through ELISA, radioligand binding assays, and Western blotting. Microscopy was employed to evaluate cardiac hypertrophy, fibrosis, and ultrastructure. MetS rats exhibited cardiac dysfunction, evidenced by a reduced cardiac output and ejection fraction, not explained by heart hypertrophy or fibrosis. MetS rats also had an elevated susceptibility to lethal arrhythmia following intra-cardiac administration of the non-selective β-adrenergic agonist isoproterenol, suggesting alterations in the β-adrenergic system. The total serum adrenaline and noradrenaline levels were higher in the MetS animals than those in the control group. The radioligand binding assays indicated no change in the βAR density; however, the Western blot analyses revealed decreased levels of Gα proteins and β-arrestin 1, but increased βAR and Gα protein levels. This study contributes to our understanding of how MetS can alter cardiac function, raising the risk of lethal arrhythmia induced by the β-adrenergic (fight or flight) response and underscores the relevance of therapeutically targeting MetS before its pathological progression toward cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386379 | PMC |
http://dx.doi.org/10.3390/ijms26167989 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFArthritis Rheumatol
September 2025
Washington DC Veterans Affairs Medical Center; Georgetown University, Washington, DC, USA.
Objective: To evaluate the clinical characteristics, social deprivation, insurance coverage, and medication use across regional subsets of patients with psoriatic arthritis (PsA) in the US.
Methods: A cross-sectional study of PsA patients in the Rheumatology Informatics System for Effectiveness (RISE) registry between January 2020 and March2023 was conducted. Distribution of high disease activity (HDA - RAPID3>12), high comorbidity (RxRisk ≥90 percentile), high Area Deprivation Index (ADI ≥80), insurance coverage, prednisone ≥10mg daily, and all DMARD therapies across geographic regions were evaluated.
Nanoscale Horiz
September 2025
Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, Brazil.
This study developed heterogeneous catalysts composed of ZnO and CeO supported on H-ZSM-5 for the direct conversion of methane (CH) and carbon dioxide (CO) into acetic acid. The acid-base and electronic properties were modulated through oxide impregnation and reduction, aiming to create active sites capable of simultaneously activating both reactants. The samples were characterized by XRD, N physisorption, HRTEM/EDS, NH-TPD, CO-TPD, TPR, FTIR, XPS, CO-DRIFTS, and TGA, and tested in a batch reactor at 300 °C and 10 bar.
View Article and Find Full Text PDFHaematologica
September 2025
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Not available.
View Article and Find Full Text PDF