Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tetrabromobisphenol A (TBBPA) is a flame retardant widely added to polymer products. Successful isolation of target analytes from complex natural matrices relies on extraction materials that can selectively interact with the analytes. In this context, the use of magnetic nanostructured adsorbents, such as magnetic molecularly imprinted polymer systems (MMIPs), can play a key role in both selective matrix-analyte interactions and separation processes. Here, to achieve different TBBPA loadings, FeO nanoparticles (NPs) were coated with chitosan (CS) or (3-aminopropyl) triethoxysilane (APTES). Moreover, to further promote template-NP interactions and modulate the polymeric shell thickness of MMIPs, 3,4-dihydroxyhydrocinnamic acid (HC) was covalently bonded in different amounts to APTES-functionalized MNPs. Thermal, SEM, and elemental analyses showed a different coating degree of the nanocomposites (FeO@CS-MIP size d = 77 nm and FeO@APTES-MIP d = 20 nm). In addition, it was confirmed that the adsorption mechanism of TBBPA on FeO@APTES-HCX-MIPs was due to specific interactions between the systems and the analyte, unlike non-imprinted analogs (MNIPs). Among the developed systems, the Fe3O4@APTES-HC0.7-MIP sample showed the best extraction efficiency (85%) associated with good discharge efficiency (70%). Furthermore, this nanocomposite displayed high selectivity towards TBBPA (ε > 1) and good extraction efficiency in three consecutive cycles (67%), demonstrating great potential in the environmental field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386876PMC
http://dx.doi.org/10.3390/ijms26167686DOI Listing

Publication Analysis

Top Keywords

magnetic molecularly
8
molecularly imprinted
8
imprinted polymer
8
extraction efficiency
8
synthesis characterization
4
characterization magnetic
4
polymer sorbents
4
sorbents feo@mips
4
feo@mips removal
4
removal tetrabromobisphenol
4

Similar Publications

A novel molecularly imprinted 3D COF-based magnetic solid-phase extraction combined with UHPLC-MS/MS to detect trace residues of acyclovir, penciclovir and ganciclovir in animal-derived food.

Food Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The residues of antiviral drugs acyclovir (ACV), penciclovir (PCV) and ganciclovir (GCV) in foods, particularly in ready-to-eat products, pose a significant threat to human health, making it urgent to develop a rapid and sensitive method for their detection. Herein, we designed a novel magnetic molecularly imprinted three-dimensional covalent organic framework (MICOF@FeO) for selective extraction of these antiviral drugs from complicated food matrix. The prepared MICOF@FeO integrates molecular recognition ability, 3D COF structural advantages and magnetic responsiveness, providing high selectivity, large adsorption capacity and facile operation for magnetic solid-phase extraction (MSPE).

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Rutin is a potent antioxidant with therapeutic value in managing vascular and inflammatory conditions. Its accurate quantification is critical for pharmaceutical quality control and food safety. In this study, rutin was employed as a template to construct surface molecularly imprinted magnetic nanozymes (MIPs@FeO-CoNi).

View Article and Find Full Text PDF

A new nanosurface molecularly imprinted polyacrylamide nanoprobe (FeO@MIP) for pH sensing was prepared by using FeO magnetic nanoparticles as a substrate, rhodamine B (RhB) as a template and sensing molecule, acrylamide (AM) as a functional monomer, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The nanoprobe was characterized by scanning electron microscopy (SEM), hysteresis loop, Fourier transform infrared spectroscopy (FT-IR), and resonance Rayleigh scattering (RRS) spectroscopy. FeO@MIP exhibited a strong RRS peak at 375 nm, and the sensing molecule RhB as the acceptor was enhanced with increasing pH in the pH range of 2.

View Article and Find Full Text PDF

Chloramphenicol (CAP) residues pose significant risks to human health and ecosystem sustainability due to their widespread abuse and environmental persistence. This study addresses the global challenge of CAP contamination by developing innovative lightweight honeycomb-like magnetic molecularly imprinted polymers (LH-MMIPs) through the synergistic combination of molecular imprinting and etching technologies. The novel nanomaterial's design features an acid-resistant epoxy resin protective layer that enables maximal carrier etching while maintaining structural integrity.

View Article and Find Full Text PDF