Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for assessing tumor and parenchymal perfusion in the liver, playing a developing role in locoregional therapies (LRTs) for hepatocellular carcinoma (HCC). This review explores the conceptual underpinnings and early investigational stages of DCE-MRI for LRTs, including thermal ablation, transarterial chemoembolization (TACE), and transarterial radioembolization (TARE). Preclinical and early-phase studies suggest that DCE-MRI may offer valuable insights into HCC tumor microvasculature, treatment response, and therapy planning. In thermal ablation therapies, DCE-MRI provides a quantitative measurement of tumor microvasculature and perfusion, which can guide more effective energy delivery and estimation of ablation margins. For TACE, DCE-MRI parameters are proving their potential to describe treatment efficacy and predict recurrence, especially when combined with adjuvant therapies. In Y TARE, DCE-MRI shows promise for refining dosimetry planning by mapping tumor blood flow to improve microsphere distribution. However, despite these promising applications, there remains a profound gap between early investigational studies and clinical translation. Current quantitative DCE-MRI research is largely confined to phantom models and initial feasibility assessments, with robust retrospective data notably lacking and prospective clinical trials yet to be initiated. With continued development, DCE-MRI has the potential to personalize LRT treatment approaches and serve as an important tool to enhance patient outcomes for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383434PMC
http://dx.doi.org/10.3390/bioengineering12080870DOI Listing

Publication Analysis

Top Keywords

dce-mri
9
quantitative dynamic
8
dynamic contrast-enhanced
8
contrast-enhanced magnetic
8
magnetic resonance
8
resonance imaging
8
imaging dce-mri
8
hepatocellular carcinoma
8
early investigational
8
thermal ablation
8

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.

View Article and Find Full Text PDF

The role of AI for improved management of breast cancer: Enhanced diagnosis and health disparity mitigation.

Comput Methods Programs Biomed

September 2025

Electrical and Computer Engineering Department, School of Engineering, Morgan State University, Baltimore, MD, 21251, USA. Electronic address:

Breast Cancer (BC) remains a leading cause of morbidity and mortality among women globally, accounting for 30% of all new cancer cases (with approximately 44,000 women dying), according to recent American Cancer Society reports. Therefore, accurate BC screening, diagnosis, and classification are crucial for timely interventions and improved patient outcomes. The main goal of this paper is to provide a comprehensive review of the latest advancements in BC detection, focusing on diagnostic BC imaging, Artificial Intelligence (AI) driven analysis, and health disparity considerations.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF