98%
921
2 minutes
20
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its role in predicting disease outcomes is complex. Muscle wasting is prevalent in COPD patients and exacerbates disease severity, contributing to poor physical performance, reduced quality of life, and increased mortality. Additionally, COPD is linked to metabolic disorders, such as dyslipidemia and diabetes, which contribute to systemic inflammation and worse prognosis and, therefore, should be treated. The systemic inflammatory response plays a central role in the development of sarcopenia. In this review, we highlight the mixed efficacy of statins in managing dyslipidemia in COPD, considering side effects, including muscle toxicity in such a frail population. Alternative lipid-lowering therapies and nutraceuticals, in addition to standard treatment, have the potential to target hypercholesterolemia, which is a coexisting condition present in more than 50% of all COPD patients, without worsening muscle wasting. The interference between adipose tissue and lung, and particularly the potential protective role of adiponectin, an adipocytokine with anti-inflammatory properties, is also reviewed. Respiratory, metabolic and muscular health in COPD is comprehensively assessed. Identifying and managing dyslipidemia and paying attention to other relevant COPD comorbidities, such as sarcopenia and muscle wasting, is important to improve the quality of life and to reduce the clinical burden of COPD patients. Future research should focus on understanding the relationships between these intimate mechanisms to facilitate specific treatment for systemic involvement of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383373 | PMC |
http://dx.doi.org/10.3390/biomedicines13081817 | DOI Listing |
J Intensive Care Med
September 2025
Medical Intensive Care Unit, 108 Military Central Hospital, Hanoi, Vietnam.
Background: Bedside ultrasound is increasingly utilized to assess muscle mass in critically ill patients, providing a noninvasive and real-time tool for early risk stratification. Muscle wasting is known to be associated with adverse outcomes in septic shock, but its prognostic value using ultrasound in this population remains underexplored. This study aimed to investigate the association between changes in rectus femoris cross-sectional area (CSA), assessed by bedside ultrasound, and 28-day mortality in patients with septic shock.
View Article and Find Full Text PDFCancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
Unlabelled: Disuse muscle atrophy (DMA) is characterized by progressive loss of muscle mass and strength, often accompanied by inflammation and macrophage imbalance. Here, we introduce hydrogenated silicene nanosheets (H-silicene) as a novel nanotherapeutic strategy to mitigate DMA through modulating macrophage polarization. H-silicene exhibited good biocompatibility and sustained hydrogen release.
View Article and Find Full Text PDFFront Public Health
September 2025
Changzhou University, Changzhou, Jiangsu, China.
Objective: Insulin-like growth factor-1 (IGF-1) is thought to play an important role in regulating skeletal muscle mass and function, with its decline potentially linked to age-related frailty and sarcopenia. Given the limitations of pharmacological and nutritional interventions, exercise may serve as a potential non-pharmacological strategy to modulate IGF-1 levels. The purpose of this study is to systematically evaluates the effects of exercise interventions on serum IGF-1 levels in older adults with frailty and/or sarcopenia using a meta-analysis approach.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.
Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.
Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.