Spontaneous Emergence of Cefiderocol Resistance in KPC-163: Genomic and Transcriptomic Insights.

Antibiotics (Basel)

Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbapenem-resistant (CRKP) is an urgent public health threat due to its rapid dissemination and resistance to last-line antibiotics. Cefiderocol (FDC), a novel siderophore cephalosporin, targets resistant Gram-negative pathogens by exploiting bacterial iron uptake mechanisms. However, resistance to FDC is emerging among carbapenemase (KPC)-producing strains. This study characterizes a spontaneous FDC-resistant subpopulation (IHC216) derived from a KPC-producing strain (KPNMA216) using comprehensive genomic, transcriptional, and phenotypic analyses. : Given the whole-genome sequencing results, where mutations were identified in genes involved in transcriptional regulation and membrane permeability () among others, in the present work we further explore their potential implications and conduct a more detailed analysis of the IHC216 genome. A qRT-PCR analysis highlighted significant downregulation of classical siderophore-mediated iron acquisition systems (, , ) and upregulation of alternative iron uptake pathways (, ), reflecting a switch in iron acquisition strategies. : A notable downregulation of correlated with restored susceptibility to carbapenems, indicating collateral susceptibility. Altered expressions of and implicated adaptive changes in cell wall synthesis, potentially affecting FDC resistance mechanisms. Furthermore, enhanced oxidative stress responses via upregulated expression and increased capsule production were observed. : These findings underscore the complex interplay of genetic and transcriptional adaptations underlying FDC resistance, highlighting potential therapeutic vulnerabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382882PMC
http://dx.doi.org/10.3390/antibiotics14080832DOI Listing

Publication Analysis

Top Keywords

iron uptake
8
iron acquisition
8
fdc resistance
8
resistance
5
spontaneous emergence
4
emergence cefiderocol
4
cefiderocol resistance
4
resistance kpc-163
4
kpc-163 genomic
4
genomic transcriptomic
4

Similar Publications

UIon antagonism strategy for cadmium mitigation in Morchella sextelata: Physiological and metabolomic insights.

Fungal Biol

October 2025

Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir

Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.

View Article and Find Full Text PDF

Understanding the kinetics of macrophage uptake and the metabolic fate of iron-carbohydrate complexes used for iron deficiency anemia treatment.

J Control Release

September 2025

Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland. Electronic address:

Iron-carbohydrate complexes (ICCs) are widely used nanomedicines to treat iron deficiency anemia, yet their intracellular fate and the mechanisms of action underlying their differences in treatment outcomes remain poorly understood. Here, we thus performed a comprehensive dynamic characterization of two structurally distinct ICCs - iron sucrose (IS) and ferric carboxymaltose (FCM) - in primary human macrophages, key cells to the iron metabolism. By employing innovative correlative microscopy techniques, elemental analysis, and in vitro pharmacokinetic profiling, we demonstrate that the uptake, intracellular trafficking, and biodegradation of ICCs depend on their physicochemical properties.

View Article and Find Full Text PDF

An iron-hard legacy? An analysis of metal accumulation and recovery over time in Brazil's Atlantic Rainforest plants after the Fundão Dam collapse.

J Hazard Mater

September 2025

Laboratório de Estudos Aplicados em Fisiologia Vegetal, Instituto Federal Goiano, Campus Rio Verde Rio Verde, GO 75.901-970, Brazil.

The study investigates the long-term effects of the 2015 Fundão tailings dam collapse in Brazil, focusing on metal accumulation in soil, plants and its implications for ecosystem recovery. The research, conducted between 2021 and 2024, analyzed 3311 individuals from areas directly and indirectly affected by the dam collapse, as well as from non-affected areas, integrating geochemical, spatial, and temporal analyses. Metal concentration and cellular damage were evaluated in roots and leaves.

View Article and Find Full Text PDF

Tackling microbial iron homeostasis: novel antimicrobial strategies.

Trends Pharmacol Sci

September 2025

Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.

The escalating threat of antimicrobial resistance demands innovative therapeutic strategies beyond classical targets. Recent insights into the mechanisms of bacterial iron acquisition - ranging from siderophores and heme uptake to ferrous iron transport - have enabled new approaches to impair pathogen growth and virulence. These pathways are increasingly being harnessed for therapeutic gain.

View Article and Find Full Text PDF

NRAMP family in plants: Contribution to cadmium accumulation.

Biochim Biophys Acta Mol Cell Res

September 2025

University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:

The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).

View Article and Find Full Text PDF