A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic inflammation is closely associated with various diseases, underscoring the need for natural, biocompatible anti-inflammatory candidates. For this purpose, mussel foot protein could be an excellent candidate due to its diverse biological activities. Hence, this study systematically evaluates the anti-inflammatory effects of a highly soluble mussel foot protein (HMFP) and HMFP-PEG using LPS-stimulated RAW264.7 cells as an in vitro inflammation model. The results reveal that both HMFP and HMFP-PEG markedly reduced intracellular reactive oxygen species (ROS) levels and suppressed the secretion of pro-inflammatory mediators, including IL-1β, TNF-α, and NO, while promoting the production of anti-inflammatory cytokines such as IL-10 and TGF-β. Mechanistically, both agents markedly inhibited the LPS-induced phosphorylation of PI3K, Akt, NF-κB, and IκB, indicating that their anti-inflammatory effects are mediated via suppression of the PI3K/Akt and NF-κB signaling pathways. Furthermore, HMFP and HMFP-PEG downregulated the expression of the inflammatory marker iNOS and markedly upregulated the M2 macrophage marker CD206, suggesting a role in promoting macrophage polarization toward an anti-inflammatory M2 phenotype. Notably, NF-κB signaling was identified as a key mediator in the anti-inflammatory mechanisms of both HMFP and its PEG-modified form. Collectively, these findings demonstrate that HMFP and HMFP-PEG exert significant anti-inflammatory effects through dual inhibition of NF-κB and PI3K/Akt signaling and by promoting M2 macrophage polarization, indicating their potential as promising candidates for the treatment of inflammation-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383214PMC
http://dx.doi.org/10.3390/antiox14081021DOI Listing

Publication Analysis

Top Keywords

hmfp hmfp-peg
16
mussel foot
12
foot protein
12
promoting macrophage
12
macrophage polarization
12
anti-inflammatory effects
12
highly soluble
8
soluble mussel
8
signaling promoting
8
nf-κb signaling
8

Similar Publications