A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Targeting NRF2 and FSP1 to Overcome Ferroptosis Resistance in -Deficient and Cancer Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Ferroptosis is an iron-dependent form of regulated cell death driven by lipid peroxidation and holds promise as a therapeutic strategy against cancers with elevated iron metabolism. However, many tumors evade ferroptosis through the upregulation of specialized antioxidant defense mechanisms. Here, we investigated ferroptosis susceptibility and resistance mechanisms in TSC models and in ovarian and breast cancer cell lines, aiming to identify potential therapeutic targets. : Ferroptosis sensitivity was assessed using RSL3 and erastin. We explored the contribution of ferroptosis defense pathways using inhibitors of NRF2 (ML385) and FSP1 (iFSP1). RNA sequencing was performed to evaluate the expression of ferroptosis resistance genes and to explore NRF2-regulated transcriptional programs. : -deficient cells were resistant to RSL3- and erastin-induced ferroptosis. This resistance correlated with upregulation of ferroptosis defense genes, including NRF2 and its downstream targets. Pharmacological inhibition of NRF2 resensitized -deficient cells to ferroptosis, confirming a protective role for NRF2. However, FSP1 inhibition did not restore ferroptosis sensitivity in -deficient angiomyolipoma cells. In contrast, FSP1 knockdown significantly enhanced ferroptosis sensitivity in ovarian (PEO1, PEO4, OVCAR3) and breast (MDA-MB-436) cancer cells. Notably, in MDA-MB-436 cells, FSP1 knockdown was more effective than NRF2 inhibition to enhance ferroptosis sensitivity. FSP1 expression was not regulated by NRF2, suggesting that NRF2-targeted therapies alone may be insufficient to overcome ferroptosis resistance in certain cancer contexts. : -deficient cells resist ferroptosis via an adaptive antioxidant response that protects against elevated iron-mediated lipid peroxidation. Our findings identify NRF2 and FSP1 as key, but mechanistically distinct, regulators of ferroptosis resistance. The differential efficacy of targeting these pathways across cancer types highlights the potential need for patient stratification. Dual targeting of NRF2 and FSP1 may offer an effective therapeutic strategy for iron-dependent, ferroptosis-resistant cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384948PMC
http://dx.doi.org/10.3390/cancers17162714DOI Listing

Publication Analysis

Top Keywords

ferroptosis resistance
20
nrf2 fsp1
16
ferroptosis
16
ferroptosis sensitivity
16
-deficient cells
12
targeting nrf2
8
fsp1
8
overcome ferroptosis
8
cancer cells
8
cells ferroptosis
8

Similar Publications