Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme (Hexb). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To investigate how a microglial gene is involved in neuronal homeostasis, here we show that β-hexosaminidase is secreted by microglia and integrated into the lysosomal compartment of neurons. To assess therapeutic relevance, we treat the Hexb SD mouse model with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaces Hexb microglia with Hexb-sufficient cells. Microglial replacement reverses apoptotic gene signatures, improves behavior, restores β-hexosaminidase enzymatic activity and Hexb expression, prevents substrate buildup, and normalizes neuronal lysosomal phenotypes, underscoring the critical role of myeloid-derived β-hexosaminidase in maintaining neuronal health and establishing microglial replacement as a potential LSD therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391554 | PMC |
http://dx.doi.org/10.1038/s41467-025-63237-0 | DOI Listing |