The Role of miRNAs and Extracellular Vesicles in Adaptation After Resistance Exercise: A Review.

Curr Issues Mol Biol

Institute of Sport Sciences and Physical Education, Faculty of Science, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resistance exercise can enhance or preserve muscle mass and/or strength. Modifying factors are secreted following resistance exercise. Biomarkers like cytokines and extracellular vesicles, especially small extracellular vesicles, are released into the circulation and play an important role in cell-to-cell and inter-tissue communications. There is increasing evidence that physical activity itself promotes the release of extracellular vesicles into the bloodstream, suggesting the importance of vesicles in mediating systemic adaptations following exercise. Extracellular vesicles contain proteins, nucleic acids like miRNAs, and other molecules targeting different cell types and tissues of distant organs. Therefore, extracellular vesicles and encapsulated miRNAs are fine tuners of protein synthesis and are important in the adaptation after resistance training. However, there is a lack of strong data supporting the precise mechanisms of these processes. In this literature review, we collected publications related to miRNA and extracellular vesicle profile changes induced by resistance exercise. To the best of our knowledge, the changes in human extracellular vesicle and microRNA profiles following resistance exercise have not been reviewed yet. We aimed to assess the shortcomings and difficulties characterizing this research area, to summarize the existing results to date, and to propose possible solutions that could help standardize the implementation of future investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384656PMC
http://dx.doi.org/10.3390/cimb47080583DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
24
resistance exercise
20
extracellular
8
adaptation resistance
8
extracellular vesicle
8
vesicles
7
resistance
6
exercise
6
role mirnas
4
mirnas extracellular
4

Similar Publications

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF

Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.

View Article and Find Full Text PDF

Objective: To establish organ affiliation of liver microparticles using forensic cytological method based on hepatocytes' morphological characteristics and to determine their species belonging according to the human IgG using a quantitative enzyme-linked immunosorbent assay (ELISA).

Material And Methods: Previously dried microparticles (from 0.2×0.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Global Research Trends in EV-Based Cell-Free Therapy for Osteoarthritis: A Bibliometric Analysis.

Tissue Eng Regen Med

September 2025

Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.

Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.

View Article and Find Full Text PDF