A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Internal mechanism failure of magnetic controlled growing rods (MCGRs) for early-onset scoliosis: a systematic review of implant retrieval analysis studies. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Magnetic controlled growing rods (MCGRs) are used to treat early-onset scoliosis when nonsurgical options fail, controlling curve progression and allowing for continued spinal growth. Recent reports of unplanned reoperations and mechanical failure of MCGRs have led to further research. This is a systematic review on the retrieval analysis of explanted MCGR rods. Understanding the failure mechanisms will shed light on the survivorship and complications associated with the implant.

Methods: A Medline and EMBASE database search was performed, looking at all variations in the terms "magnetic controlled growing rods" and the terms "retrieval/explant/metallosis" All published retrieval analysis studies of MCGR were included, and all clinical outcome studies, biomechanical testing studies, review articles, and case reports were excluded. Data were collected regarding the source, year, and aim of the study; number of patients and rods analysed; duration of implantation; and main findings and conclusions.

Results: Nine studies (454 rods) reported metallosis due to O-ring damage (67%), internal mechanism failure of locking pins (45%) and rod fracture (7%) in all MCGR generations. Actuator locking pin fractures reported in 174 rods (38.3%) continue to persist despite newer implant iterations. The pin fracture rates decreased from 52% in MAGEC 1.3 to 15% in MAGEC X.

Conclusions: MCGR failure is multifactorial, and metallosis is of significant concern because of the unknown long-term effects in patients. Early recognition and revision of existing rods in situ is essential, along with continued efforts to reduce mechanical failure in future iterations of MAGEC.

Levels Of Evidence: MCGR failure is multifactorial, and metallosis is of significant concern because of the unknown long-term effects in patients. Early recognition and revision of existing rods in situ is essential, along with continued efforts to reduce mechanical failure in future iterations of MAGEC. This systematic review provides Level III evidence on failure mechanisms in MCGR, as the results were obtained from Level III studies. The levels of evidence for all relevant references can be found in the reference section.

Level Ii: [1-4].

Level Iii: [5-34].

Level Iv: [35-44].

Level V: [45-50].

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43390-025-01171-3DOI Listing

Publication Analysis

Top Keywords

controlled growing
12
systematic review
12
retrieval analysis
12
mechanical failure
12
failure
9
internal mechanism
8
mechanism failure
8
magnetic controlled
8
rods
8
growing rods
8

Similar Publications