A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal exercise, with limited exploration of deficit dynamics. The present study aimed to analyze the behavior of oxygen deficit in young female handball players (N = 42, age: 15.4 ± 1.3 years) during graded exercise. Oxygen deficit was estimated using the American College of Sports Medicine (ACSM) algorithm, restricted to subanaerobic threshold segments of a quasi-ramp exercise protocol. Cardiorespiratory parameters were measured with the spiroergometry test on treadmills, and body composition was assessed via Dual Energy X-ray Absorptiometry (DEXA). Cluster and principal component analyzes revealed two distinct athlete profiles with statistically significant differences in both morphological and physiological traits. Cluster 2 showed significantly higher relative VO peak (51.43 ± 3.70 vs. 45.70 ± 2.87 mL·kg·min; < 0.001; Cohen's d = 1.76), yet also exhibited a greater oxygen deficit per kilogram (39.03 ± 16.71 vs. 32.56 ± 14.33 mL·kg; = 0.018; d = 0.80). Cluster 1 had higher absolute body mass (69.67 ± 8.13 vs. 59.66 ± 6.81 kg; < 0.001), skeletal muscle mass ( < 0.001), and fat mass ( < 0.001), indicating that body composition strongly influenced oxygen deficit values. The observed differences in oxygen deficit profiles suggest a strong influence of genetic predispositions, particularly in cardiovascular and muscular oxygen utilization capacity. Age also emerged as a critical factor in determining the potential for adaptation. Oxygen deficit during submaximal exercise appears to be a multifactorial phenomenon shaped by structural and physiological traits. While certain influencing factors can be modified through training, others especially those of genetic origin pose inherent limitations. Early development of cardiorespiratory capacity may offer the most effective strategy for long-term optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389884PMC
http://dx.doi.org/10.3390/sports13080252DOI Listing

Publication Analysis

Top Keywords

oxygen deficit
32
deficit
9
oxygen
9
female handball
8
handball players
8
submaximal exercise
8
body composition
8
physiological traits
8
cluster higher
8
mass 0001
8

Similar Publications