A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383547PMC
http://dx.doi.org/10.3390/biomimetics10080554DOI Listing

Publication Analysis

Top Keywords

deep learning
8
spatial attention
8
filter bank
8
enhanced ssvep
4
ssvep bionic
4
bionic spelling
4
spelling xlstm-based
4
xlstm-based deep
4
learning spatial
4
attention filter
4

Similar Publications