A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Improved Elk Herd Optimization Algorithm for Maximum Power Point Tracking in Photovoltaic Systems Under Partial Shading Conditions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In partial shading conditions (PSCs), the power-voltage characteristics of photovoltaic systems exhibit multiple peaks, causing traditional maximum power point tracking (MPPT) algorithms to easily become trapped in local optima and fail to achieve global maximum power point tracking, thereby reducing energy conversion efficiency. Effectively and rapidly locating the global maximum power under complex environmental conditions has become crucial for enhancing MPPT performance in photovoltaic systems. This paper therefore proposes an improved elk herd optimization (IEHO) algorithm to achieve the rapid tracking of the global maximum power point under various weather conditions. The algorithm proposes a position update mechanism guided by the predation risk probability to direct elk herd migration and introduces the triangle walk strategy, thereby enhancing the algorithm's capability to avoid local optima. Furthermore, IEHO employs a memory-guided redirection strategy to skip redundant calculations of historical duty cycles, significantly improving the convergence speed of MPPT. To validate the algorithm's performance advantages, the proposed IEHO method is compared with other recognized meta-heuristic algorithms under various weather conditions. The experimental results demonstrate that, across all tested conditions, the proposed IEHO method achieves an average tracking efficiency of 99.99% and an average tracking time of 0.3886 s, outperforming other comparative algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383704PMC
http://dx.doi.org/10.3390/biomimetics10080533DOI Listing

Publication Analysis

Top Keywords

maximum power
20
power point
16
elk herd
12
point tracking
12
photovoltaic systems
12
global maximum
12
improved elk
8
herd optimization
8
partial shading
8
shading conditions
8

Similar Publications