98%
921
2 minutes
20
Titanium-aluminum-vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383309 | PMC |
http://dx.doi.org/10.3390/biomimetics10080507 | DOI Listing |
J Fish Biol
September 2025
Education and Conservation Department, SeaWorld, San Diego, California, USA.
Drones are becoming increasingly useful in their ability to observe wildlife. They have been especially useful in documenting marine animals such as sharks. Here we present novel aerial drone observations of a previously unknown dorsal-fin behaviour in white sharks (Carcharodon carcharias).
View Article and Find Full Text PDFBiol Proced Online
September 2025
Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.
Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.
Surg Endosc
September 2025
Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
Introduction: This study aimed to evaluate surgeons' ergonomic satisfaction when using laparoscopic energy devices and to investigate how prolonged use affects muscle fatigue and surgical performance.
Methods: A two-part study, including a survey and a kinesiologic experiment, was conducted to compare 4 laparoscopic energy devices (D1-D4). Thirty surgeons completed a structured survey assessing ergonomic factors such as device weight, grip strength, handle design, comfort, and trigger location.
Environ Manage
September 2025
TEMSUS Research Group, Catholic University of Ávila, Ávila, Spain.
Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.
View Article and Find Full Text PDFNat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDF