98%
921
2 minutes
20
Cholangiopathies, a diverse group of diseases affecting the biliary tract, are characterized by the activation of cholangiocytes, fibrosis, and inflammation. Recent research has identified extracellular vesicles (EVs) as crucial mediators of communication within the hepatobiliary system. This review aims to explore the impact of EVs on cholangiocyte behavior and their role in disease development. EVs originating from cholangiocytes, hepatocytes, and immune cells carry a variety of molecules, including non-coding RNAs, proteins, and lipids, which influence immune responses, fibrosis, and epithelial repair. Specifically, EVs released by activated or senescent cholangiocytes can worsen inflammation and fibrosis by delivering molecules such as lncRNA H19, miR-21, and damage-associated molecular patterns (DAMPs) to hepatic stellate and immune cells. Additionally, the polarity and content of EVs are influenced by specific subcellular domains of cholangiocytes, indicating distinct signaling functions. In conditions such as primary sclerosing cholangitis (PSC), cholangiocarcinoma (CCA), and biliary atresia, EVs play a role in disease progression and offer potential as non-invasive biomarkers and therapeutic targets. This review underscores the importance of in-depth profiling and validation of EVs to fully utilize their diagnostic and therapeutic capabilities. Overall, EV-mediated signaling is a critical mechanism in cholangiopathies, providing a new avenue for understanding disease progression and developing precision medicine approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385149 | PMC |
http://dx.doi.org/10.3390/cells14161274 | DOI Listing |
Dev Growth Differ
September 2025
Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.
Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.
Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.
Int J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFEpigenomics
September 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.
View Article and Find Full Text PDF