A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigation and Distinction of Energy Metabolism in Proliferating Hepatocytes and Hepatocellular Carcinoma Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic rewiring is a hallmark of both hepatic regeneration and malignant transformation, complicating the identification of cancer-specific traits. This study aimed to distinguish the metabolic profiles of proliferating hepatocytes and hepatocellular carcinoma (HCC) cells through integrated analyses of mRNA and protein expression, along with functional characterization. We compared non-malignant Upcyte hepatocytes (HepaFH3) cultured under proliferative and confluent conditions with primary human hepatocytes, primary human hepatoma cells, and hepatoma cell lines. Proliferating HepaFH3 cells exhibited features of metabolic reprogramming, including elevated glycolysis, increased expression, and ketone body accumulation, while maintaining low c-MYC expression and reduced levels, distinguishing them from malignant models. In contrast, HCC cells showed upregulation of HK2, c-MYC, and , reflecting a shift toward aggressive glycolytic and ketolytic metabolism. Functional assays supported the transcript and protein expression data, demonstrating increased glucose uptake, elevated lactate secretion, and reduced glycogen storage in both proliferating and malignant cells. These findings reveal that cancer-like metabolic changes also occur during hepatic regeneration, limiting the diagnostic utility of individual metabolic markers. HepaFH3 cells thus provide a physiologically relevant in vitro model to study regeneration-associated metabolic adaptation and may offer insights that contribute to distinguishing regenerative from malignant processes. Our findings highlight the potential of integrated metabolic profiling in differentiating proliferation from tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384642PMC
http://dx.doi.org/10.3390/cells14161254DOI Listing

Publication Analysis

Top Keywords

proliferating hepatocytes
8
hepatocytes hepatocellular
8
hepatocellular carcinoma
8
hepatic regeneration
8
hcc cells
8
protein expression
8
primary human
8
hepafh3 cells
8
cells
7
metabolic
7

Similar Publications