Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity that affects 2-8% of pregnancies worldwide, driven by placental dysfunction and systemic inflammation. Growth arrest-specific protein 6 (Gas6) and its receptor AXL play pivotal roles in PE pathogenesis, promoting trophoblast impairment and vascular dysregulation. This study investigated the transcriptomic reversal effects of AXL Receptor Tyrosine Kinase (AXL) inhibition in a Gas6-induced rat model of PE using RNA sequencing (RNA-seq). Pregnant rats were administered Gas6 to induce PE-like symptoms such as hypertension and proteinuria; a subset also received the AXL inhibitor R428. RNA-seq of placental tissues revealed 2331 differentially expressed genes (DEGs) in Gas6-AXLi versus Gas6 (1277 upregulated, 1054 downregulated). Protein-protein interaction networks and Gene Ontology enrichment highlighted upregulated mitochondrial functions, including electron transport chain components (e.g., NDUFC2, COX5A), suggesting enhanced energy metabolism. In the secondary analysis that compared Gas6 to Control, Gas6-upregulated extracellular matrix proteins (e.g., COL4A1, LAMC1) linked to fibrosis were reversed by AXL inhibition, indicating ameliorated placental remodeling. AXL inhibition activated compensatory pathways beyond Gas6 blockade, unveiling novel mechanisms for PE resolution. These findings position AXL inhibitors as promising therapeutics, offering insights into mitochondrial and fibrotic targets to mitigate this enigmatic disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384434 | PMC |
http://dx.doi.org/10.3390/cells14161229 | DOI Listing |