Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Aberrant pre-mRNA splicing is increasingly recognized as a key contributor to tumorigenesis and immune evasion. However, the regulatory factors orchestrating splicing dynamics within the tumor microenvironment (TME) remain incompletely understood. Here, we identify GPATCH3, a previously uncharacterized G-patch domain-containing protein, as a critical modulator of alternative splicing and immune regulation in cancer.
Methods: We employed biochemical studies, splicing reporter assays, and transcriptomic analyses to elucidate the function of GPATCH3. and models, including GPATCH3-depleted cell lines and mouse xenografts, were used to assess its roles in tumor progression. Immune infiltration patterns were analyzed using TIMER2.0 based on TCGA transcriptomic data.
Results: GPATCH3 interacts with the RNA helicase DHX15 and enhances its ATPase activity, promoting proper spliceosome disassembly. Loss of GPATCH3 led to splicing alterations, including in immunoregulatory genes such as , , and . Functional studies revealed that GPATCH3 deficiency attenuated tumor growth . Conversely, elevated GPATCH3 expression was associated with reduced infiltration of cytotoxic T cells and NK cells, alongside an enrichment of immunosuppressive populations such as MDSCs and CAFs across multiple cancer types. Transcriptomic analysis further revealed that GPATCH3 deficiency upregulates immunomodulatory genes such as and , suggesting a role in shaping the TME via splicing regulation.
Discussion: Our findings suggest GPATCH3 as a critical regulator that governs alternative splicing and immunosuppressive microenvironment remodeling. By modulating the splicing fidelity of key immune genes and altering their expression, GPATCH3 may facilitate immune escape and tumor progression. These results provide mechanistic insights into how RNA splicing factors interface with immune regulation and highlight GPATCH3 as a potential therapeutic target for immunomodulatory cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375585 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1612461 | DOI Listing |